

ТОЛЩИНОМЕР УЛЬТРАЗВУКОВОЙ

A1210

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

АПЯС.412231.017 РЭ

Акустические Контрольные Системы Москва 2015

Содержание

1 Описание и работа прибора	5
1.1 Назначение прибора	
1.1.2 Условия эксплуатации	
1.2 Технические характеристики	6
1.3 Устройство и работа	7
1.3.1 Устройство	
1.3.2 Принцип действия	
1.3.3 Режимы работы	
1.3.4 Дисплей	
1.3.5 Клавиатура	13
2 Использование по назначению	15
2.1 Эксплуатационные ограничения	15
2.2 Подготовка прибора к использованию	15
2.2.1 Подготовка поверхности	
2.2.2 Подключение преобразователя	
2.2.3 Включение/выключение прибора	
2.2.4 Настройка и адаптация прибора к параметрам используемого ПЭП	
2.3 Использование прибора	
2.3.1 Работа с прибором	
2.3.2 Режим НАСТРОЙКА	
2.3.4 Режим ПАМЯТЬ	
2.3.5 Режим А-СКАН	
2.4 Проведение измерений	53
2.4.1 Измерения раздельно-совмещенным преобразователем	
2.4.2 Измерения совмещенным преобразователем	
2.4.3 Проверка работоспособности прибора в процессе контроля	55
2.5 Перенос данных на компьютер	55
3 Техническое обслуживание	57
3.1 Аккумулятор	57
3.2 Зарядка аккумулятора	57
3.3 Возможные неисправности	57
4 Хранение	58
5 Транспортирование	58
Приложение А	
AADJAUAVJAAVAAAA AA 00000000000000000000000000	/ T T T T T T T T T T T T T T T T T T T

Толщиномер ультразвуковой А1210

Настоящее руководство по эксплуатации (далее по тексту - руководство) содержит технические характеристики, описание устройства и принципа действия, а также сведения, необходимые для правильной эксплуатации толщиномера ультразвукового A1210 (далее по тексту – толщиномер или прибор).

Перед началом эксплуатации прибора следует внимательно изучить настоящее руководство.

К работе с прибором допускается персонал, знающий общие принципы теории распространения ультразвуковых колебаний, прошедший курс обучения и ознакомленный с эксплуатационной документацией.

Для правильного проведения ультразвукового контроля необходимо определить задачи контроля, выбрать схемы контроля, подобрать преобразователи, оценить условия контроля в подобных материалах и т.п.

Постоянная работа над совершенствованием возможностей, повышением надежности и удобства эксплуатации иногда может привести к некоторым непринципиальным изменениям, не отраженным в настоящем издании руководства, не ухудшающим технические характеристики прибора.

Изготовитель:

ООО «Акустические Контрольные Системы» (ООО «АКС»)

1 ОПИСАНИЕ И РАБОТА ПРИБОРА

1.1 НАЗНАЧЕНИЕ ПРИБОРА

1.1.1 Назначение и область применения

Прибор относится к ручным ультразвуковым (УЗ) приборам общего назначения портативного исполнения.

Прибор предназначен для измерений толщины стенок труб (включая изгибы), котлов, баллонов, сосудов, работающих под давлением, обшивок и других изделий из черных и цветных металлов, с гладкими или грубыми и корродированными поверхностями, а также изделий из пластмасс и других материалов с высоким затуханием ультразвука при одностороннем доступе к поверхности этих изделий.

Прибор может применяться в лабораторных, полевых, цеховых условиях в различных отраслях промышленности при обязательной предварительной подготовке поверхности и использовании контактной смазки, которой могут служить различные масла, вода, глицерин, специальные контактные жидкости и гели для ультразвукового контроля и т. д.

Прибор оснащен запатентованной в России системой автоматической адаптации к кривизне и шероховатости поверхности изделия (Патент РФ № 2082160). Благодаря этой системе показания прибора одинаково достоверны во всех практических случаях.

Наличие режима A-СКАН позволяет исключить риск ложных показаний, что существенно повышает достоверность контроля, проводить экспресс-поиск инородных включений и расслоений, а также получать достоверные результаты при проведении измерений через полимерные, лакокрасочные и иные типы изоляционных покрытий.

Прибор имеет возможность изменения ориентации изображения на 90 градусов в правую или левую сторону в режиме А-СКАН.

Прибор позволяет сохранять результаты измерений в энергонезависимой памяти и передавать их на персональный компьютер (ПК) для дальнейшего анализа, обработки и хранения.

Связь с ПК осуществляется через USB порт.

1.1.2 Условия эксплуатации

Прибор предназначен для эксплуатации при следующих условиях окружающей среды:

- температура: от минус 20 до плюс 50 °C;
- относительная влажность воздуха до 95 % при температуре плюс 35 °C.

1.2 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Основные технические характеристики прибора приведены в таблице 1.

Таблица 1

Наименование параметра	Значение
Диапазон измерений толщины (по стали), мм:	
с преобразователем D1771 4.0A0D12CL	от 0,7 до 300,0
с преобразователем S3567 2.5A0D10CL	от 0,8 до 300,0
Пределы допускаемой абсолютной погрешности измерений	
толщины, мм, не более,	
где H — измеряемая толщина:	
при толщинах от 0,7 до 3,0 мм	$\pm (0,01 \cdot H + 0,1)$
при толщинах от 3,01 до 99,99 мм	$\pm (0,01 \cdot H + 0,05)$
при толщинах от 100,0 до 300,0 мм	$\pm (0,01 \cdot H + 0,1)$
Дискретность индикации толщины, мм:	
при толщинах до 99,99 мм	0,01; 0,1
при толщинах от 100,0 мм	0,1
Диапазон настроек скорости ультразвука, м/с	от 500 до 19 999
Питание	встроенный литиевый
Питание	аккумулятор
Номинальное напряжение питания, В	3,7
Продолжительность работы от аккумулятора, ч, не менее	9
Габаритные размеры электронного блока, мм, не более	161×70×24
Масса электронного блока, г, не более	210
Средняя наработка на отказ, ч	18 000
Установленный срок службы, лет	5

1.3 УСТРОЙСТВО И РАБОТА

1.3.1 Устройство

Прибор представляет собой электронный блок (рисунок 1), к которому с помощью кабелей подключаются сменные пьезоэлектрические преобразователи (ПЭП).

Рисунок 1

В верхней части лицевой панели электронного блока расположен цветной ТFT дисплей, на котором отображаются результаты измерений и служебная информация, необходимая для управления прибором. Дисплей обеспечивает полный визуальный контроль процесса измерений при помощи цветовой индикации.

Под дисплеем находится пленочная клавиатура управления прибором.

В нижней части лицевой панели размещен юстировочный образец толщиной 5 мм из нержавеющей стали, скорость распространения ультразвуковых волн в котором составляет 5750 м/с. Образец предназначен для выполнения адаптации прибора к подключенному ПЭП и для оперативной оценки работоспособности прибора.

На верхней торцевой стенке электронного блока расположены разъемы для подключения ПЭП, один из разъемов маркирован красной точкой (рисунок 2).

Рисунок 2

На нижней торцевой стенке электронного блока расположено крепление для ремешка и разъем USB Micro B с заглушкой, который предназначен для подключения USB кабеля связи с персональным компьютером и подключения адаптера питания 220 В - USB для заряда встроенного аккумулятора прибора (рисунок 3).

Рисунок 3

Коннектор «Micro В» USB кабеля следует подключать символом буквой «В» вверх (рисунок 4). и/или

Рисунок 4

В заднюю стенку чехла прибора вшит магнитный держатель, который обеспечивает надежное крепление прибора на металлических поверхностях, что создает дополнительное удобство при проведении контроля в труднодоступных местах.

1.3.2 Принцип действия

Принцип действия прибора состоит в измерении времени двойного прохода ультразвуковых колебаний через объект контроля (ОК) от одной поверхности до другой, которое пересчитывается в значение толщины.

Для излучения УЗ импульсов в ОК и приема их отражений используется ПЭП, который устанавливается на поверхность ОК в том месте, где необходимо измерить толщину. ПЭП имеет острую характеристику направленности излучения и приема ультразвука, поэтому толщина определяется непосредственно под местом установки

преобразователя. Если поверхность материала, противоположная той, на которую установлен ПЭП, имеет впадины, то УЗ импульсы отражаются от них и толщина определяется как кратчайшее расстояние от внешней поверхности до этих впадин.

1.3.3 Режимы работы

Толщиномер может работать в следующих режимах:

- в режиме измерений с отображением принадлежности результата измерений заданному интервалу и критерию срабатывания системы автоматической сигнализации дефекта (АСД) НОРМА;
 - в режиме измерений с отображением сохраненных результатов ПАМЯТЬ;
 - в режиме измерений с графическим отображением сигнала A-СКАН;
 - в режиме настройки и выбора параметров измерений НАСТРОЙКА.

Во всех режимах измерений предусмотрено сохранение результатов в памяти прибора.

В режиме НОРМА толщиномер позволяет оперативно определять толщину ОК и оценивать ее принадлежность заданному интервалу и критерию срабатывания АСД.

В режиме ПАМЯТЬ толщиномер позволяет оперативно определять толщину ОК, просматривать на экране сохраненные результаты измерений, а также выполнять коррекцию записей, проводя повторные измерения с записью данных в корректируемые ячейки памяти.

Режим А-СКАН позволяет исключить неточности в измерениях, вызванные наличием неоднородностей в материале объекта контроля. В данном режиме сигналы визуализируются на экране в виде А-Скана, а условия и критерии измерений устанавливаются непосредственно в процессе работы. Возможны четыре способа измерения: по первому превышению сигналом уровня строба, по максимуму сигнала в стробе, между двумя максимальными сигналами в стробе и АКФ по стробу. Также предусмотрена возможность просмотра выбранных участков сигнала, текущих параметров и настроек, сохранения изображения А-Скана вместе с результатом измерения.

Режим НАСТРОЙКА позволяет изменять выбранные условия и параметры измерений. Набор параметров, доступных для редактирования, состоит из общих для всех режимов и индивидуальных для каждого режима измерений.

1.3.4 Дисплей

Во всех режимах работы в верхней строке дисплея присутствует информация о текущем режиме работы прибора и уровне заряда аккумулятора. В таблице 2 приведены виды пиктограмм закладок режимов работы.

Таблица 2

Закладка	Режим работы
Закладка	т сжим расоты
* 	HOPMA
	АТРМАП
	А-СКАН
۶	НАСТРОЙКА

Пиктограммы режимов измерения всегда располагаются слева направо в следующей последовательности: HOPMA – ПАМЯТЬ – A-CKAH, при этом пиктограмма активного режима выделена желтым цветом (рисунок 5).

Рисунок 5

При входе в режим НАСТРОЙКА, его пиктограмма отображается на месте пиктограммы того режима, из которого был произведен вход, параметры и установки режима становятся доступны для редактирования (рисунок 6).

Рисунок 6

В режимах НОРМА и ПАМЯТЬ ниже всегда присутствуют символы, информирующие о наличии и уровне сигнала, а также методе проведения измерений, информация о единицах измерения и числовое значение результата измерения.

В таблице 3 приведено описание индикаторов акустического контакта и метода проведения измерений.

Таблица 3

Вид индикатора	Описание
	Уровень сигнала максимальный, усиление приемного тракта установлено на минимуме
	Уровень сигнала средний, усиление приемного тракта установлено на среднее значение
	Уровень сигнала минимальный, усиление приемного тракта установлено на максимуме
	Сигнал отсутствует или недостаточен для проведения измерений
	Нет измерений
(IIII)	Измерение с использованием метода АКФ
	Измерение с использованием порогового метода

Вид дисплея толщиномера в режиме НОРМА представлен на рисунке 7.

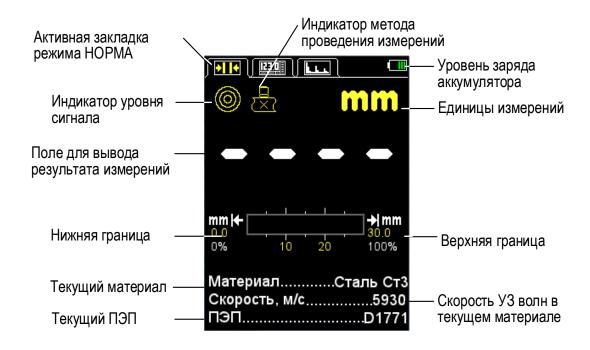


Рисунок 7

Вид дисплея толщиномера в режиме ПАМЯТЬ представлен на рисунке 8.

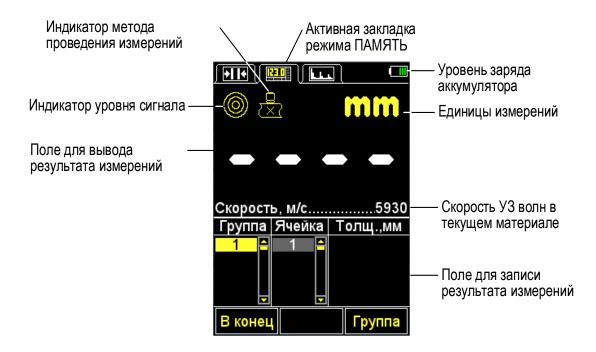


Рисунок 8

В режиме А-СКАН на дисплее представлено графическое отображение эхо-сигнала, числовое значение результата измерения, информация о единицах измерения и усилении сигнала. В нижней части экрана расположены управляющие пиктограммы.

Прибор имеет возможность изменения ориентации изображения в режиме A-CKAH на 90 градусов в правую или левую сторону.

Вид дисплея меняется в зависимости от выбора ориентации изображения:

- вертикальная;
- горизонтальная левая;
- горизонтальная правая.

Вид прибора в режиме А-СКАН с включенной горизонтальной левой ориентацией дисплея представлен на рисунке 9.

Рисунок 9

Вид дисплея толщиномера в режиме А-СКАН при вертикальной ориентации представлен на рисунке 10.

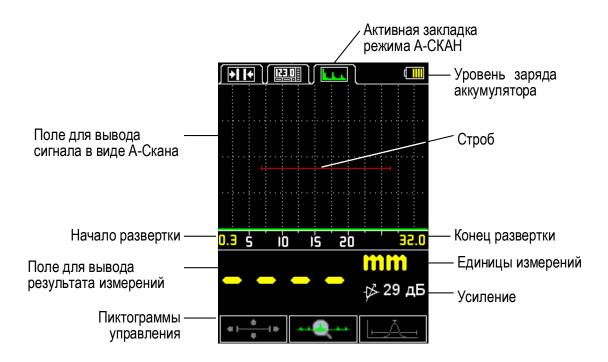


Рисунок 10

1.3.5 Клавиатура

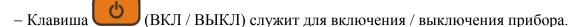

Клавиатура прибора (рисунок 11) содержит 11 функциональных клавиш и клавишу включения / выключения прибора.

Рисунок 11

Основные функции клавиш:

ВНИМАНИЕ: ПРИБОР АВТОМАТИЧЕСКИ ВЫКЛЮЧАЕТСЯ ЧЕРЕЗ 10 МИНУТ, ЕСЛИ ЗА ЭТОТ ПЕРИОД НЕ ПРОИСХОДИТ НАЖАТИЯ КАКИХ-ЛИБО КЛАВИШ, НЕ ИДЕТ ПРОЦЕСС ИЗМЕРЕНИЙ.

ВНИМАНИЕ: ЧЕРЕЗ 2 МИНУТЫ, ЯРКОСТЬ ЭКРАНА АВТОМАТИЧЕСКИ УСТАНАВЛИВАЕТСЯ НА МИНИМАЛЬНОЕ ЗНАЧЕНИЕ – 20%, ЕСЛИ ЗА ЭТОТ ПЕРИОД НЕ ПРОИСХОДИТ НАЖАТИЯ КАКИХ-ЛИБО КЛАВИШ, НЕ ИДЕТ ПРОЦЕСС ИЗМЕРЕНИЙ!

— Функциональные клавиши (F) выполняют различные действия, в зависимости от выбранного режима работы прибора. Наименование текущей функции выводится на дисплей над каждой из клавиш. В настоящем руководстве используется нумерация функциональных клавиш слева направо: F1, F2, F3 (рисунок 12).

Рисунок 12

- Клавиша служит для перехода от режимов измерений к режиму НАСТРОЙКА и обратно.
- Клавиша (ВВОД) в зависимости от режима работы и состояния толщиномера выполняет различные функции.

2 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

2.1 ЭКСПЛУАТАЦИОННЫЕ ОГРАНИЧЕНИЯ

Прибор предназначен для эксплуатации в условиях окружающей среды, указанных в п. 1.1.2.

2.2 ПОДГОТОВКА ПРИБОРА К ИСПОЛЬЗОВАНИЮ

2.2.1 Подготовка поверхности

Поверхность объекта контроля необходимо очистить от грязи и песка, если она покрыта коррозией, то следует соскоблить рыхлую ржавчину и нанести больше смазки, чем в случае гладкой поверхности.

Зачистка грубых корродированных поверхностей кроме повышения достоверности измерений позволяет продлить срок службы преобразователя.

2.2.2 Подключение преобразователя

Для определения толщины ОК используются раздельно-совмещенные и совмещенные преобразователи.

Преобразователь следует подключать, соблюдая маркировку.

В зависимости от типа преобразователя используются два типа кабеля и, соответственно, два способа подключения ПЭП.

Раздельно-совмещенные преобразователи подключаются с помощью двойного кабеля с разъемами типа LEMO 00.

Кабель, обозначенный красным хвостовиком, следует подключать к разъему, маркированному красной точкой (рисунок 13).

Рисунок 13

Совмещенные преобразователи подключаются с помощью одинарного кабеля LEMO 00 к немаркированному разъему.

2.2.3 Включение/выключение прибора

Для включения прибора необходимо нажать клавишу

На экране прибора на несколько секунд появится заставка с названием прибора и номером версии прошивки (рисунок 14).

Рисунок 14

Толщиномер автоматически перейдет в режим, который был установлен в момент его последнего выключения, с соответствующими настройками.

Примечание — Если при включении к прибору подключен тот же преобразователь, что использовался перед последним выключением, то прибор будет сразу готов к работе. При подключении другого преобразователя сначала следует провести настройку прибора на работу с ним.

Выключение прибора осуществляется вручную нажатием клавиши или автоматически через 10 минут при отсутствии нажатия каких-либо клавиш, процесса измерений.

Все настройки толщиномера сохраняются при его выключении и полном разряде аккумулятора.

2.2.4 Настройка и адаптация прибора к параметрам используемого ПЭП

ВНИМАНИЕ: ПЕРЕД НАЧАЛОМ ЭКСПЛУАТАЦИИ ПРИБОРА И ПРИ СМЕНЕ ПРЕОБРАЗОВАТЕЛЯ НЕОБХОДИМО ПРОВЕСТИ ПРОЦЕДУРУ НАСТРОЙКИ И АДАПТАЦИИ ПРИБОРА К ИНДИВИДУАЛЬНЫМ ПАРАМЕТРАМ ИСПОЛЬЗУЕМОГО ПЭП!

Без проведения этой процедуры прибор будет неработоспособен и при переходе к любому из режимов измерения на экране будет присутствовать предупреждающая надпись «Выполните тест ПЭП» (рисунок 15).

Рисунок 15

2.2.4.1 Выбор преобразователя

Для выбора преобразователя следует:

– нажать клавишу для входа в режим НАСТРОЙКА.

- клавишами перейти на пункт ПЭП и нажать клавишу **F3** (Открыть) или для входа в базу преобразователей (рисунок 16).

Рисунок 16

– клавишами перейти на строку с именем подключенного ПЭП и нажать клавишу для его выбора (рисунок 17).

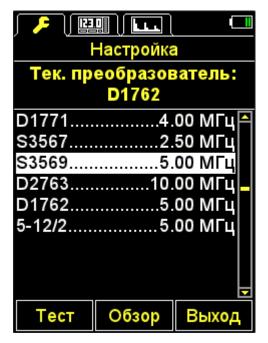


Рисунок 17

После выбора преобразователя автоматически запустится процесс тестирования ПЭП и адаптации прибора к его индивидуальным параметрам.

2.2.4.2 Адаптация прибора к параметрам используемого преобразователя

Адаптация проходит в два этапа. На первом этапе прибор автоматически анализирует характеристики ПЭП, а на втором - адаптируется к ним, используя реальный эхо-сигнал от встроенного в прибор юстировочного образца.

Для адаптации прибора к индивидуальным параметрам используемого ПЭП необходимо:

- Войти в режим НАСТРОЙКА.
- Перейти на строку «ПЭП» и нажать клавишу **F1** (Тест). На экране появится надпись «**TECT ПЭП** Поднимите ПЭП в воздух, удалите с него масло и нажмите ВВОД».
- Удалить с преобразователя контактную смазку и, не приводя в контакт с юстировочным образцом, нажать

На экране появится надпись «Идет тестирование – Пожалуйста подождите...».

Необходимо дождаться надписи на экране «**TECT ПЭП** - Установите ПЭП на юстировочный образец и нажмите BBOД».

– Нанести на юстировочный образец прибора контактную жидкость и установить на него преобразователь. Нажать клавишу ...

На экране появится надпись «Идет тестирование – Пожалуйста подождите...».

- По окончании тестирования на экран будет выведено сообщение о его результатах: положительном, с индикацией значения толщины юстировочного образца, или отрицательном (рисунок 18).

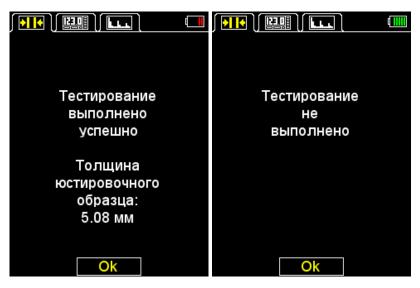


Рисунок 18

- Снять преобразователь с юстировочного образца.
- Нажать клавишу **F2** (Ок). При положительном результате тестирования прибор перейдет в режим измерений, при отрицательном вернется в главное окно режима НАСТРОЙКА.

На любом шаге процедуры тестирования ее можно отменить, нажав клавишу **F2** (Отмена), в этом случае прибор вернется в основное окно режима НАСТРОЙКА.

На рисунке 19 приведена последовательность видов экрана прибора при прохождении процесса адаптации с его успешным завершением.

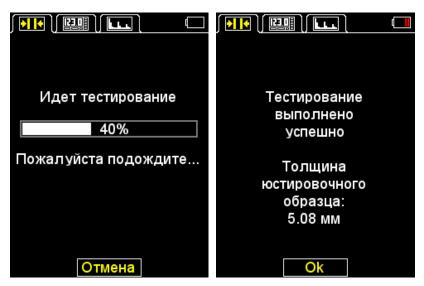


Рисунок 19

2.3 ИСПОЛЬЗОВАНИЕ ПРИБОРА

2.3.1 Работа с прибором

При работе с прибором не рекомендуется скользить без необходимости рабочей поверхностью ПЭП по поверхности ОК. При необходимости контроля в нескольких точках объекта с большой площадью поверхности следует переставлять ПЭП в эти точки, отрывая его от поверхности, а не сканировать непрерывно по ней.

Примечание – Сканирование существенно ускоряет износ ПЭП.

Если сканирование все же необходимо, например, при поиске локальных утонений материала, то следует выполнять его максимально осторожно без сильного нажима на ПЭП и только с чистой контактной смазкой на предварительно очищенной от грязи поверхности.

При контроле следует учитывать температурную зависимость скорости распространения ультразвука в охлажденных или нагретых материалах. Для получения максимальной точности измерений следует настраивать прибор на скорость ультразвука по калибровочному образцу, имеющему ту же температуру, что и объект контроля.

Примечание — Не следует оставлять на ПЭП контактную смазку после окончания работы. Капля жидкости может дать отраженный сигнал и прибор не сможет выключиться автоматически.

2.3.2 Режим НАСТРОЙКА

Режим НАСТРОЙКА включает в себя список доступных для редактирования параметров, процедуры тестирования ПЭП и калибровки скорости на образце, передачи данных на ПК, просмотр базы преобразователей, а также работу с базой материалов.

Все настройки прибора сохраняются при его выключении и полном разряде аккумулятора.

Вид экрана в режиме НАСТРОЙКА-НОРМА представлен на рисунке 20.

Рисунок 20

Клавиши, активные в любом меню режима НАСТРОЙКА:

- перемещение активной строки по пунктам меню, переход осуществляется циклически в обоих направлениях. Параметр, на котором находится активная строка, становится доступным для выбора или редактирования;

- уменьшение/увеличение числового значения выбранного параметра.

Пункты меню режима НАСТРОЙКА общие для всех режимов измерения, соответствующие им параметры (в метрической системе измерений) и функции приведены в таблице 4 .

Таблица 4

Пункт меню (параметр)	Значение параметра	Описание
Режим	Норма / Память / А-СКАН	Выбор режима измерений
ПЭП	ПЄП вмИ	Вход в базу преобразователей. Запуск процедуры тестирования ПЭП
Материал	Имя материала	Вход в базу материалов
Калибровка на, мм	от 2 до 80	Установка толщины образца. Запуск процедуры калибровки скорости на образце
Звук	Вкл / Выкл	Управление звуковой индикацией
Вибрация	Вкл / Выкл	Управление виброиндикацией
Язык	Русский / Англ.	Выбор языка интерфейса
Ед.измерения	мм / дюймы	Выбор системы единиц измерения
Яркость, %	от 20 до 100	Установка яркости экрана

Дополнительные пункты меню режима НАСТРОЙКА-НОРМА, являющиеся общими для режимов НОРМА и ПАМЯТЬ, и соответствующие им параметры (в метрической системе измерений) и функции приведены в таблице 5.

Таблица 5

Пункт меню (параметр)	Значение параметра	Описание
АСД	Выкл / Снрж / Внутри	Выкл – выключение АСД. Внутри / Снрж – Установка критерия срабатывания звуковой сигнализации при нахождении результата измерения в пределах установленных границ (внутри) или вне их (снаружи)
Граница: от, мм	от 0 до 150	Установка нижней границы срабатывания АСД
Граница: до, мм	от 1 до 300	Установка верхней границы срабатывания АСД
Дискрет	0,01 / 0,1	Установка дискретности отображения результата

Дополнительные пункты меню режима НАСТРОЙКА-ПАМЯТЬ и соответствующие им параметры (в метрической системе измерений) и функции приведены в таблице 6 .

Таблица 6

Пункт меню (параметр)	Значение параметра	Описание
Очистка памяти, %	от 0 до 100	Индикация объема используемой памяти. Запуск процедуры удаления результатов измерений из памяти

Дополнительные пункты меню режима НАСТРОЙКА - A-СКАН и соответствующие им параметры (в метрической системе измерений) и функции и приведены в таблице 7.

Таблица 7

Пункт меню (параметр)	Значение параметра	Описание
Начало разв-ки, мм	от 0 до 150	Установка начала развертки
Конец разв-ки, мм	от 5 до 300	Установка конца развертки
Строб: от, мм	от 0 до 150	Установка нижней границы строба
Строб: до, мм	от 1 до 300	Установка верхней границы строба
Усиление, дБ	от 0 до 80	Установка усиления
Вид А-Скана	Заливка / Контур	Выбор вида отображения сигнала в режиме A-CKAH
Ориентация	Авто / ГорЛев. / Верт / Гор.Пр.	Выбор ориентации изображения А-Скана на дисплее

2.3.2.1 Пункт РЕЖИМ

Выбор режима измерений:

- НОРМА с отображением принадлежности результата измерений заданному интервалу и критерию;
- ПАМЯТЬ с отображением на экране прибора сохраненных в памяти результатов измерений;
 - А-СКАН с отображением на экране сигнала в виде А-Скана.

Активные клавиши:

- **F1** (Норма) выбор режима НОРМА;
- **F2** (Память) выбор режима ПАМЯТЬ;
- **F3** (А-Скан) выбор режима А-СКАН;

последовательное переключение между режимами.

Вид экрана пункта РЕЖИМ приведен на рисунке 21.

Рисунок 21

2.3.2.2 Пункт ПЭП

Вход в базу преобразователей.

Активные клавиши:

F1 (Тест) - запуск процедуры тестирования ПЭП и адаптации прибора к выбранному преобразователю;

- вход в базу преобразователей. **F3** (Открыть) или

Вид экрана пункта ПЭП приведен на рисунке 22.

Рисунок 22

– Просмотр базы преобразователей.

В заголовке окна отображается информация об используемом в настоящий момент ПЭП - «Тек. преобразователь:».

ВНИМАНИЕ: У ПОЛЬЗОВАТЕЛЯ НЕТ ВОЗМОЖНОСТИ САМОСТОЯТЕЛЬНО ПОПОЛНЯТЬ И ИЗМЕНЯТЬ БАЗУ ПРЕОБРАЗОВАТЕЛЕЙ!

Активные клавиши:

- **F1** (Тест) запуск процедуры настройки и адаптации прибора к индивидуальным параметрам ПЭП.
- **F2** (Обзор) просмотр подробной информации о преобразователе. На экран выводится информация об имени, типе и частоте ПЭП.
 - **F3** (Выход) возвращение в основное окно режима НАСТРОЙКА.
- выбор преобразователя из списка, при этом автоматически запускается процедура тестирования ПЭП и адаптации прибора к его параметрам. Подробно процедура описана в п. 2.2.4.2.

При выходе из базы прибор запоминает последнюю активную строку и устанавливает ее при повторном входе в базу. После выключения прибора информация об активной строке базы сбрасывается.

На рисунке 23 приведены виды экрана прибора при просмотре базы преобразователей.

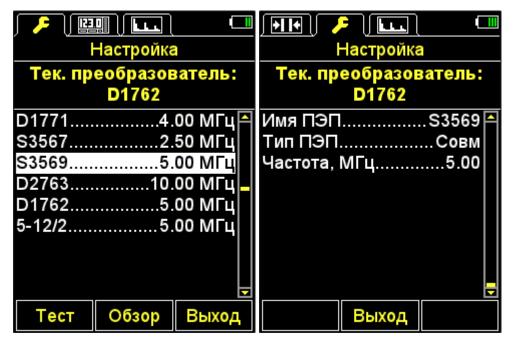


Рисунок 23

2.3.2.3 Пункт МАТЕРИАЛ

– Вход в базу материалов.

Активные клавиши:

F2 (Открыть) или - вход в базу материалов, для записи в память новых и редактирования уже существующих материалов, а также выбора материала для работы.

Вид экрана пункта МАТЕРИАЛ приведен на рисунке 24.



Рисунок 24

Работа с базой материалов.

В памяти прибора может храниться информация о 64 материалах.

В заголовке окна отображается информация об используемом в настоящий момент (текущем) материале и скорости ультразвука в нем.

Создание нового материала.

В меню первым отображается пункт НОВЫЙ, а далее названия и скорости прохождения УЗ волн в материалах, записанных в память прибора (рисунок 25).

Рисунок 25

Активные клавиши:

F1 (Создать) - открытие редактора названия материала (рисунок 26).

F3 (Выход) - возвращение в главное окно режима НАСТРОЙКА.

Рисунок 26

Активные клавиши:

F1 (Выход из редактирования с сохранением изменений.

Толщиномер ультразвуковой А1210

 $\mathbf{F2}$ (XXX) – Переключение символов в таблице букв: абв – русские строчные, ABB – русские прописные, abc – английские строчные, ABC – английские прописные.

F3 (Выход из редактирования без сохранения изменений.

При создании нового материала или редактировании информации о материале, записанном в памяти прибора, на экране отображается текущее название материала с инверсным активным символом в поле названия материала, скорость прохождения УЗ волн в материале и таблицы доступных символов.

Для изменения названия материала следует:

- клавишами выбрать в строке имени материала символ, подлежащий замене или удалению, например «С» сталь Ст3;
 - клавишей **F2** выбрать язык и регистр символов;
- клавишами , и выбрать в таблице символов новый символ, например «Б» АБВГ, операцию удаления выделенного символа или символа перед выделенным , нажать клавишу ...

Для изменения скорости распространения ультразвука в материале следует:

- клавишами или перевести курсор в поле значения скорости. Как только значение скорости станет доступным для редактирования оно изменит цвет с белого на красный и значение начнет уменьшаться или увеличиваться в зависимости от того какая клавиша была использована для перехода.
- клавишами или + установить требуемое значение скорости ультразвука Сталь Ст3 5925 ;

В таблице 8 описано назначение некоторых клавиш при работе в редакторе названия материала.

Таблица 8

Клавиша	Назначение	
	Перемещение по таблице символов	
-+	Выбор символа для редактирования в поле названия материала. Изменение значения скорости	

Толщиномер ультразвуковой А1210

Клавиша	Назначение	
	Замена активного символа на символ из таблицы. После замены активным становится следующий символ	
F1 ()	Выход из редактирования с сохранением изменений	
F2 (XXX)	Переключение символов в таблице букв, где XXX: абв – русские строчные АБВ – русские прописные аbс – английские строчные АВС – английские прописные	
F3 ()	Выход из редактирования без сохранения изменений	

Редактирование информации о материале.

Активные клавиши:

F1 (Редакт.) - переход к редактированию информации о выбранном материале. Процесс редактирования аналогичен созданию информации о материале, описанном выше.

F2 (Удалить) - удаление материала из памяти прибора.

F3 (Выход) - возвращение в основное окно режима НАСТРОЙКА.

- выбора материала для работы и возвращение в основное окно режима НАСТРОЙКА.

При выходе из базы прибор запоминает последнюю активную строку и устанавливает ее при повторном входе в базу. После выключения прибора информация об активной строке базы сбрасывается.

Вид экрана базы материалов приведен на рисунке 27.

Рисунок 27

При нажатии клавиши F2 (Удалить) на экране появляется надпись «Удалить выбранный материал?» (рисунок 28). Можно подтвердить удаление, нажав F1 (Да), или отказаться от удаления - F3 (Het).

Рисунок 28

2.3.2.4 Пункт КАЛИБРОВКА НА

Пункт КАЛИБРОВКА НА предназначен для определения скорости УЗ волны в материале с известной толщиной.

Толщина калибровочного образца может быть установлена в интервале от 2 до 80 мм.

Вид экрана прибора пункта КАЛИБРОВКА НА приведен на рисунке 29.

Активные клавиши:

- **F1** () или уменьшение значения толщины калибровочного образца.
- **F2** (Выполн.) запуск процедуры калибровки скорости на образце.
- **F2** (+) или увеличение значения толщины калибровочного образца.

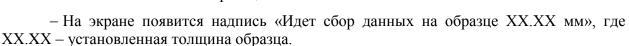


Рисунок 29

Установка толщины калибровочного образца и процедура калибровки скорости на образце.

Для калибровки скорости следует:

- Установить толщину образца.
- Запустить процедуру калибровки скорости на образце.
- На экране появится надпись «Установите ПЭП на калибровочный образец и нажмите ВВОД».
 - Нанести на образец контактную смазку.
 - Установить ПЭП на образец и нажать

– Текущий результат измерения скорости будет отображаться на экране. После выполнения всех измерений на экране появится значение скорости и надпись «Сохранить результат?».

На рисунке 30 приведена последовательность видов экрана прибора при проведении процедуры калибровки.

Рисунок 30

Сохранение значения скорости, полученной в процессе калибровки.

Активные клавиши:

F1 (Да) - сохранение полученного значения скорости для существующего в базе материала, который следует выбрать в списке материалов, (рисунок 31) или для нового материала: выбрать пункт «Новый», задать название материала и нажать клавишу **F1** (Сохран.) (рисунок 32).

F3 (Нет) - выход без сохранения результата.

Рисунок 31

Рисунок 32

2.3.2.5 Пункт АСД (только для режимов НОРМА и ПАМЯТЬ)

Установка условий срабатывания цветовой, звуковой и вибросигнализации при измерениях.

Выбор условия срабатывания:

ВНУТРИ - попадание результата измерения в установленный интервал;

СНАРУЖИ - результат измерения не попал в установленный интервал;

ВЫКЛ - АСД выключена.

Вид экрана прибора пункта АСД приведен на рисунке 33.

Активные клавиши:

F1 (Внутри) - выбор условия срабатывания ВНУТРИ;

F2 (Выкл) - АСД выключена;

F3 (Снрж) - выбор условия срабатывания СНАРУЖИ;

Рисунок 33

2.3.2.6 Пункт ГРАНИЦА: ОТ (только для режимов НОРМА и ПАМЯТЬ)

Установка нижней границы срабатывания АСД.

Допустимые значения от 0 до 150 мм.

Вид экрана прибора пункта ГРАНИЦА: ОТ приведен на рисунке 34.

Активные клавиши:

F1 (–) или — уменьшение значения нижней границы срабатывания АСД. **F2** (+) или — увеличение значения нижней границы срабатывания АСД.

Рисунок 34

2.3.2.7 Пункт ГРАНИЦА: ДО (только для режимов НОРМА и ПАМЯТЬ)

Установка верхней границы срабатывания АСД.

Допустимые значения от 1 до 300 мм.

Вид экрана прибора пункта ГРАНИЦА: ДО приведен на рисунке 35.

Активные клавиши:

F1 (–) или — уменьшение значения верхней границы срабатывания АСД.

F2 (+) или — увеличение значения верхней границы срабатывания АСД.

Рисунок 35

2.3.2.8 Пункт ДИСКРЕТ (только для режимов НОРМА и ПАМЯТЬ)

Установка дискретности отображения результата на экране.

Вид экрана прибора пункта ДИСКРЕТ (для метрической системы измерений) приведен на рисунке 36.

Активные клавиши:

- ${\bf F1}\ (0,1)$ установка отображения результатов измерений с одним знаком после запятой;
- ${\bf F3}~(0,01)$ установка отображения результатов измерений с двумя знаками после запятой;
 - переключение между значениями дискретности 0,1 и 0,01.

Рисунок 36

2.3.2.9 Пункт ОЧИСТКА ПАМЯТИ (только для режима ПАМЯТЬ)

Удаление результатов измерений из памяти.

В качестве параметра пункта указывается процент заполнения памяти результатами измерений.

Вид экрана прибора пункта ОЧИСТКА ПАМЯТИ приведен на рисунке 37.

Активные клавиши:

F2 (Выполн.) или - запуск процедуры очистки памяти.

Рисунок 37

После запуска процедуры очистки памяти на экране появится надпись «Сохраненные данные будут удалены. Продолжить?» (рисунок 38).

Активные клавиши:

F1 (Да) - подтверждение удаление данных.

F3 (Нет) - отказ от удаления данных.



Рисунок 38

2.3.2.10 Пункт НАЧАЛО РАЗВ-КИ (только для режима А-СКАН)

Пункт НАЧАЛО РАЗВ-КИ предназначен для установки начала области отображения А-Скана на экране.

Значение начала развертки может быть установлено от 0 до 150 мм.

Вид экрана прибора пункта НАЧАЛО РАЗВ-КИ приведен на рисунке 39.

Активные клавиши:

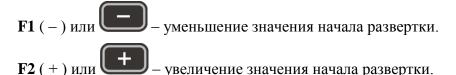


Рисунок 39

2.3.2.11 Пункт КОНЕЦ РАЗВ-КИ (только для режима А-СКАН)

Пункт КОНЕЦ РАЗВ-КИ предназначен для установки конца области отображения А-Скана на экране.

Значение конца развертки может быть установлено от 5 до 300 мм.

Вид экрана прибора пункта КОНЕЦ РАЗВ-КИ приведен на рисунке 40.

Активные клавиши:

F1 (–) или — – уменьшение значения конца развертки. **F2** (+) или — увеличение значения конца развертки.

Рисунок 40

2.3.2.12 Пункт СТРОБ: ОТ (только для режима А-СКАН)

Пункт СТРОБ: ОТ предназначен для установки нижней границы строба.

Значение может быть установлено от 0 до 150 мм.

Вид экрана прибора пункта СТРОБ: ОТ приведен на рисунке 41.

Активные клавиши:

 $\mathbf{F1}(-)$ или — уменьшение значения нижней границы строба.

F2 (+) или — увеличение значения нижней границы строба.

Рисунок 41

2.3.2.13 Пункт СТРОБ: ДО (только для режима А-СКАН)

Пункт СТРОБ: ДО предназначен для установки верхней границы строба.

Значение конца строба может быть установлено от 1 до 300 мм.

Вид экрана прибора пункта СТРОБ: ДО приведен на рисунке 42.

Активные клавиши:

F1 (–) или — уменьшение значения верхней границы строба.

F2 (+) или — увеличение значения верхней границы строба.

Рисунок 42

2.3.2.14 Пункт УСИЛЕНИЕ (только для режима А-СКАН)

Пункт УСИЛЕНИЕ предназначен для установки усиления входного тракта прибора.

Значение усиления может быть установлено от 0 до 80 дБ.

Вид экрана прибора пункта УСИЛЕНИЕ приведен на рисунке 43.

Активные клавиши:

F1 (-) или — - уменьшение значения усиления. **F2** (+) или — увеличение значения усиления.

Рисунок 43

2.3.2.15 Пункт ВИД А-СКАНА (только для режима А-СКАН)

Выбор вида отображения сигнала в режиме А-СКАН и при просмотре сохраненных А-Сканов в режиме ПАМЯТЬ – ЗАЛИВКА / КОНТУР.

Вид экрана прибора пункта ВИД А-СКАНА приведен на рисунке 44.

Активные клавиши:

- **F1** (Заливка) детектированный сигнал отображается в заполненном виде.
- **F3** (Контур) детектированный сигнал отображается в виде контурной линии.

- переключение между видами отображения сигнала.

Рисунок 44

2.3.2.1 Пункт ОРИЕНТАЦИЯ (только для режима А-СКАН)

Выбор вида ориентации изображения в режиме A-CKAH — ABTO / Γ OP. Π P. / BEPT / Γ OP. Π EB.

Вид экрана прибора пункта ОРИЕНТАЦИЯ приведен на рисунке 44.

Активные клавиши:

F1 (Гор.Лев.) – горизонтальная левая.

F2 (Верт) – вертикальная.

F3 (Гор.Пр.) – горизонтальная правая.

- переключение в режим автоматической смены ориентации изображения в зависимости от положения прибора.

Рисунок 45

2.3.2.2 Пункт ЗВУК

ВКЛЮЧЕНИЕ / ВЫКЛЮЧЕНИЕ звуковой индикации прибора.

Для повышения удобства работы с толщиномером основные события, происходящие в толщиномере при измерениях, настройке и нажатиях клавиш, сопровождаются звуковой индикацией. Звуковая индикация также служит для слухового контроля приема УЗ сигналов. Звуковые сигналы дополнительно информируют оператора о происходящих процессах, никак не влияя на результаты измерений.

Вид экрана прибора пункта ЗВУК приведен на рисунке 46.

Активные клавиши:

F1 (Вкл) - включение звуковой индикации.

F3 (Выкл) - выключение звуковой индикации;

включение/выключение звуковой индикации.

Рисунок 46

2.3.2.3 Пункт ВИБРАЦИЯ

ВКЛЮЧЕНИЕ / ВЫКЛЮЧЕНИЕ виброиндикации прибора.

Для повышения удобства работы с толщиномером основные события, происходящие в толщиномере при измерениях, настройке и нажатиях клавиш, сопровождаются виброиндикацией. Виброиндикация дополнительно информирует оператора о происходящих процессах, никак не влияя на результаты измерений.

Вид экрана прибора пункта ВИБРАЦИЯ приведен на рисунке 47.

Активные клавиши:

F1 (Вкл) - включение виброиндикации.

F3 (Выкл) - выключение виброиндикации;

- включение/выключение виброиндикации.

Рисунок 47

2.3.2.4 Пункт ЯЗЫК

Выбор языка интерфейса прибора:

- Русский;
- Английский;
- Немецкий;
- Французский;
- Итальянский;
- Португальский;
- Испанский;
- Китайский.

Вид экрана прибора пункта ЯЗЫК приведен на рисунке 48.

Активные клавиши:

 $\mathbf{F1}$ (←) – выбор языка листанием налево;

F2 (Русский) – текущий язык;

 $\mathbf{F3}$ (→) – выбор языка листанием направо;

последовательное переключение доступных языков интерфейса.

Рисунок 48

2.3.2.5 Пункт ЕД. ИЗМЕРЕНИЯ

Выбор системы единиц измерения – ММ / ДЮЙМЫ.

Вид экрана прибора пункта ЕД. ИЗМЕРЕНИЯ приведен на рисунке 49.

Активные клавиши:

 ${\bf F1}$ (мм) - метрические единицы измерения. Толщина отображается в мм, скорость – в м/с.

F3 (дюймы) - английские единицы измерения. Толщина отображается в дюймах, скорость – в дюйм/мкс;

- переключение между системами единиц измерения.

Рисунок 49

2.3.2.6 Пункт ЯРКОСТЬ

Установка яркости дисплея в диапазоне от 20 до 100 %.

Вид экрана прибора пункта ЯРКОСТЬ приведен на рисунке 50.

Активные клавиши:

F1 (–) или — - уменьшение яркости дисплея.

F3 (+) или - увеличение яркости дисплея.

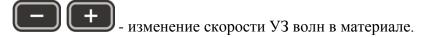
Рисунок 50

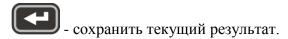
2.3.3 Режим НОРМА

Этим режимом удобно пользоваться, когда требуется определить находится ли толщина ОК в заданных пределах.

Для проведения измерений следует нанести контактную жидкость на контролируемую поверхность. Установить преобразователь на ОК. В левом верхнем углу появится индикатор уровня акустического контакта и индикатор метода проведения измерений.

При включенной звуковой индикации в меню АСД смена показаний сопровождается короткими звуковыми сигналами.


Вид экрана в режиме НОРМА при выборе условия срабатывания АСД-ВНУТРИ или АСД-СНАРУЖИ представлен на рисунке 51 (результат измерения отображается красным при выполнении условия срабатывания АСД, белым – при невыполнении условия).


Рисунок 51

Активные клавиши:

При наличии звуковых сигналов и смены показаний на экране следует зафиксировать положение УЗ преобразователя в течение 2-3 секунд и дождаться стабильных показаний.

ВНИМАНИЕ: ПРИ СНЯТИИ ПЭП С ОБЪЕКТА КОНТРОЛЯ РЕЗУЛЬТАТ ИЗМЕРЕНИЙ СРАЗУ СМЕНИТСЯ НА ГОРИЗОНТАЛЬНЫЕ ШТРИХИ!

Примечание — Результат записывается в первую свободную ячейку последней существующей группы, созданной в режиме ПАМЯТЬ. Для выбора группы и просмотра сохраненного значения следует перейти в режим ПАМЯТЬ.

Значение, записанное в память прибора в режиме НОРМА, может быть откорректировано в режиме ПАМЯТЬ соответствии с указаниями п. 2.3.4.3.

При нажатии клавиши на экране прибора появляется надпись «Сохранить текущий результат?» (рисунок 52).

Активные клавиши:

- **F1** (Сохран.) сохранение результата.
- **F3** (Отмена) отказ от сохранения.

Рисунок 52

2.3.4 Режим ПАМЯТЬ

В режиме ПАМЯТЬ экран делится на две части: в верхней отображается информация об измерении, аналогичная режиму НОРМА (толщина, уровень сигнала, метод измерения, скорость УЗ волны в текущем материале), а в нижней части - информация о ранее сохраненных в режимах НОРМА, ПАМЯТЬ и А-СКАН результатах (группы, ячейки групп и результаты измерений толщины) (рисунок 53).

Рисунок 53

Активные клавиши:

- **F1** (В конец) переход на пустую (следующую за последней записанной) ячейку последней существующей группы.
 - **F3** (Группа) добавление новой/удаление последней группы.
- сохранение результата измерения в текущей группе. Для записи результата можно выбрать любую существующую группу до начала процесса измерения или во время его.
- просмотр и корректировка результатов измерений, записанных в памяти прибора.

2.3.4.1 Добавление новой/удаление последней группы

При нажатии клавиши **F3** на экране прибора появляется надпись «Добавить /+/ новую или удалить /-/ последнюю группу?» (рисунок 54).

Активные клавиши:

- **F1** (–) удаление последней группы.
- **F2** (Отмена) выход из процедуры.
- **F3** (+) добавление новой группы, при условии, что последняя существующая группа не пуста.

Рисунок 54

2.3.4.2 Сохранение результата

Результаты измерений хранятся в памяти прибора в ячейках, из которых формируются группы. Группы и ячейки в группах идентифицируются порядковыми номерами. Группы и ячейки в каждой группе нумеруются, начиная с единицы.

Максимальное количество ячеек в группе - 500.

Максимальное количество групп - 100.

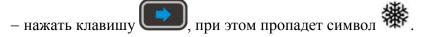
При достижении максимального количества ячеек в группе, на экране прибора появится соответствующая информационная надпись.

На практике бывает удобнее записывать результаты небольшими группами (по несколько десятков значений). Создать новую группу можно в любой удобный момент (п. 2.3.4.1). При необходимости можно вернуться к любой существующей группе и продолжить запись результатов в нее.

2.3.4.3 Просмотр и корректировка результатов измерений

Любой результат, записанный в памяти прибора можно просмотреть и при возникновении сомнения в его достоверности откорректировать, проведя повторное измерение в той же точке и перезаписав сомнительное значение.

Клавиша - вход в режим просмотра и редактирования результатов. При нажатии клавиши на экране появляется символ - (рисунок 55).


Рисунок 55

Клавиша - возвращение в режим ПАМЯТЬ.

Для просмотра записанных результатов следует использовать клавиши . Перемещение по результатам измерений происходит последовательно по ячейкам группы, в соответствии с выбранным направлением просмотра. При достижении последней/первой ячейки в группе происходит переход к следующей/предыдущей группе результатов соответственно.

Для корректировки результата следует:

– клавишами перейти на ячейку, в которой записан результат,
 требующий уточнения;

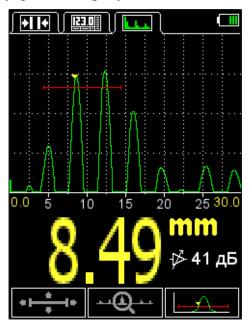
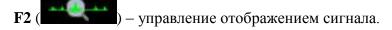
Примечание — Фактически результат остается в памяти прибора до момента записи в выбранную ячейку нового значения. Для возврата в режим просмотра без изменения значения, записанного в ячейке, следует нажать клавишу.

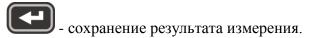
– провести измерение и при получении удовлетворительного результата нажать клавишу для его записи в выбранную для корректировки ячейку. После записи прибор автоматически вернется в режим просмотра.

2.3.5 Режим А-СКАН

Процесс измерения толщины в режиме A-CKAH заключается в проведении анализа формы изображения полученного эхо-сигнала, выборе интервала анализа и критериев, по которым вычисляется время прохождения ультразвуковых импульсов сквозь материал изделия от одной поверхности до другой. Это время через скорость распространения ультразвуковых импульсов в материале, пересчитывается в значение толщины ОК.

В режиме A-CKAH при вертикальной ориентации экран делится на две части: в верхней отображается сигнал в виде A-Скана, а в нижней части — числовые значения параметров и пиктограммы управления (рисунок 56).


Рисунок 56

Основные активные клавиши:

F1 () – управление размером и положением строба.

F3 (— / — / — / — —) — выбор способа измерения: первое превышение сигналом строба/ между двумя максимумами сигнала/ АКФ по стробу/ по максимуму в стробе.

Примечание — Результат записывается в первую свободную ячейку последней существующей группы, созданной в режиме ПАМЯТЬ. Для выбора группы и просмотра сохраненного значения следует перейти в режим ПАМЯТЬ.

В таблице 9 описано назначение клавиш при первой активной пиктограмме.

Таблица 9

Клавиша	Назначение		
-+	Изменение длины строба относительно его левой границы		
	Вертикальное перемещение строба		
	Горизонтальное перемещение строба		

В таблице 1 0 описано назначение клавиш при второй активной пиктограмме.

Таблица 10

Клавиша	Назначение		
-+	Изменение длины развертки		
	Изменение значения усиления		
	Горизонтальная прокрутка сигнала на экране		

В таблице 1 1 описано назначение клавиш при третьей активной пиктограмме.

Таблица 11

Клавиша	Назначение
	Изменение значения усиления

2.3.5.1 Сохранение А-Скана

При нажатии клавиши на экране появится сообщение, требующее подтверждения, «Сохранить текущий А-Скан?» (рисунок 57)

Рисунок 57

Примечание — Результат записывается в первую свободную ячейку последней существующей группы, созданной в режиме ПАМЯТЬ. Для выбора группы и просмотра сохраненного значения следует перейти в режим ПАМЯТЬ.

Активные клавиши:

- **F1** (Сохран.) сохранение числового значения результата измерения и его А-Скана.
- **F3** (Отмена) отказ от сохранения.
- 2.3.5.2 Просмотр сохраненных А-Сканов

Для просмотра сохраненных А-Сканов и соответствующих им результатов измерений необходимо перейти в режим ПАМЯТЬ. Данные, для которых сохранены

А-Сканы в столбце результата измерения, имеют значок и перед значением результата (рисунок 58).

Рисунок 58

Нажав клавишу **Б** войти в режим просмотра и нажать клавишу **F2** (А-Скан) (рисунок 59).

Рисунок 59

В верхней части экрана будет отображен А-Скан, сохраненный для выбранного результата (рисунок 60).



Рисунок 60

Для возврата в режим просмотра результатов следует нажать клавишу **F2** (A-Скан).

Значение, записанное в память прибора в режиме А-СКАН, может быть откорректировано в режиме ПАМЯТЬ в соответствии с указаниями п. 2.3.4.3.

ВНИМАНИЕ: ПРИ КОРРЕКТИРОВКЕ ЧИСЛОВОГО ЗНАЧЕНИЯ ГРАФИЧЕСКОЕ ОТОБРАЖЕНИЕ СИГНАЛА (А-СКАН) БУДЕТ ПОТЕРЯНО!

2.4 ПРОВЕДЕНИЕ ИЗМЕРЕНИЙ

Перед измерением толщины следует выбрать преобразователь из базы, провести адаптацию прибора и подобрать материал, на котором будет проводиться измерение. Если установленная скорость в материале отличается от реальной, необходимо откорректировать скорость вручную или провести калибровку.

От точности настройки скорости напрямую зависит точность измерений. Если допустимы оценочные измерения, то можно воспользоваться таблицей, приведенной в Приложении A и установить указанное в ней значение.

Если необходимы точные результаты, то необходимо взять образец из того же материала, что и измеряемое изделие, и настроить скорость по нему. Настраивать скорость по образцу следует с тем ПЭП, с которым будут проводиться измерения. Лучше всего использовать плоскопараллельный образец с гладкими поверхностями. Следует помнить, что, чем больше толщина образца (в пределах доступного диапазона) и чем лучше качество его поверхности, тем с большей точностью можно настроить прибор на скорость ультразвука в нем.

При проведении измерений место установки преобразователя по возможности должно быть чистым, смазанным жидкостью и не иметь грубых выступов или впадин, препятствующих установке преобразователя на поверхность. Впадина, на дно которой нельзя установить преобразователь, является местом, где результат измерения получить не удастся.

2.4.1 Измерения раздельно-совмещенным преобразователем

Измерения плоских изделий требуют лишь аккуратного прижима ПЭП к поверхности изделия и выдержки в течение 1-2 секунд для выжимания излишков смазки из-под преобразователя. За это время показания устанавливаются и уже не меняются. Не отрывая, преобразователь от поверхности ОК следует считать результат измерения с экрана прибора либо сохранить его в память, в зависимости от выбранного режима проведения измерений.

Если поверхность покрыта окалиной, то желательно соскоблить рыхлую ржавчину и нанести больше смазки, чем при гладкой поверхности. При отсутствии индикации акустического контакта результат измерений не появится на экране, поэтому следует провести контроль еще раз, зачистив место контакта от коррозии более тщательно. Такая зачистка грубых корродированных поверхностей изделий кроме повышения достоверности измерений позволяет продлить срок службы ПЭП.

Контроль цилиндрических изделий имеет определенные особенности. При измерении толщины стенок труб, особенно малых диаметров, желательно использовать более вязкие жидкости, чем трансформаторное масло или вода, и обильнее смазывать ими место контакта. Экран, разделяющий призмы раздельно-совмещенного преобразователя (его торец в виде светлой полоски расположен по диаметру рабочей поверхности), следует ориентировать поперек оси трубы. Прижимая преобразователь к стенке трубы и следя за показаниями прибора, необходимо медленно наклонять преобразователь в плоскости перпендикулярной оси трубы в ту и другую стороны. Преобразователь при этом следует прокатывать по стенке трубы, а не скользить по ней. Показания прибора при отклонении преобразователя от среднего положения несколько увеличиваются. Они обычно минимальны в положении, когда преобразователь касается стенки трубы серединой своей рабочей поверхности, то есть, когда продольная ось преобразователя пересекает ось трубы. При сильном отклонении преобразователя от этого положения показания будут скачкообразно увеличиваться. За истинное значение измеренной толщины следует выбирать минимально возможные устойчивые показания прибора при касании ПЭП стенки трубы серединой рабочей поверхности.

2.4.2 Измерения совмещенным преобразователем

При касании ПЭП поверхности ОК уже, как правило, через доли секунды устанавливается уверенный акустический контакт преобразователя с изделием и на дисплее прибора появляются показания, которые только на трубах малых диаметров незначительно меняются при покачивании преобразователя, а на плоских изделиях стабильны.

При измерениях плоских металлических изделий с толщиной менее 4–5 мм не нужно добиваться минимальной толщины слоя контактной жидкости, то есть не следует сильно прижимать преобразователь к поверхности, притирая его к ней. Достаточно небольшого прижима, чтобы толщиномер уже начал показывать результат измерения. Показания с этого момента практически не меняются.

При толщине плоских изделий более 20 мм рекомендуется обеспечивать прижим преобразователя к поверхности.

Измерения толщины стенок труб особенно просты, так как не надо определенным образом ориентировать преобразователь относительно образующей трубы. Не обязательно также покачивать преобразователь на трубе, ища минимальное измеренное значение. Достаточно поставить преобразователь приблизительно серединой рабочей поверхности на образующую трубы. Смазку желательно выбрать густую, например вазелин или литол.

При измерениях толщины объектов с двояковыпуклой поверхностью следует обеспечивать точку контакта изделия с центром рабочей поверхности преобразователя.

Толщиномер ультразвуковой А1210

На объектах с грубой или шероховатой поверхностью совмещенный преобразователь имеет преимущества по сравнению с РС преобразователем. Совмещенный преобразователь допускает сканирование по поверхности даже при грубых поверхностях и при наличии остатков абразивных частиц. Это может понадобиться при поиске мест утонений. При подобном режиме рекомендуется использовать более текучие контактные жидкости, например, минеральное моторное масло.

Во всех случаях после появления на индикаторе показаний следует подождать 1-2 секунды для оценки их стабильности. После чего, не отрывая преобразователь от поверхности ОК, считать результат измерения с экрана прибора либо сохранить его в память.

2.4.3 Проверка работоспособности прибора в процессе контроля

Проверка работоспособности прибора в процессе контроля может потребоваться, например, в случае получения серии сомнительных показаний при измерении.

Для проверки работоспособности следует воспользоваться встроенным в прибор юстировочным образцом. Его толщина составляет 5 мм, а скорость ультразвуковых волн – 5750 м/с.

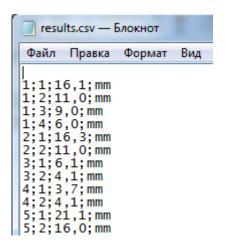
Следует установить в приборе скорость 5750 м/с, смазать образец контактной жидкостью и установить ультразвуковой преобразователь на образец. При нормальной работоспособности результат измерения толщины будет равен 5 мм с учетом погрешности измерений.

2.5 ПЕРЕНОС ДАННЫХ НА КОМПЬЮТЕР

Для переноса данных, сохраненных в приборе, на персональный компьютер (ПК) следует подключить прибор к ПК, используя кабель USB A — Micro B из комплекта поставки.

Прибор определится операционной системой как внешний съемный диск с именем – **ACSYS DISC**, который можно открыть в программе «Проводник» MS Windows или любом файловом менеджере.

Данные можно отрывать непосредственно с прибора или предварительно скопировать их на ПК.


При копировании можно задать любое имя для файла данных.

Числовые *данные*, сохраняются в приборе в удобном для экспорта в различные приложения формате **CSV** (от англ. *Comma Separated Values* - значения, разделенные запятыми), что позволяет впоследствии проводить анализ и обработку данных во внешних программах (рисунок 61). Данные сохраняются в одном файле с именем **results.csv**. Результаты в файле располагаются последовательно в соответствии с номером группы.

А-Сканы сохраняются в файлы с именем вида **aXXX-YYY.bmp**, где **XXX**-порядковый номер группы, а **YYY**-порядковый номер измерения в группе.

× results.csv ×							
	A	В	С	D			
1							
2	1	1	16,1	mm			
3	1	2	11	mm			
4	1	3	9	mm			
5	2	1	16,3	mm			
6	2	2	11	mm			
7	3	1	6,1	mm			
8	3	2	4,1	mm			
9	4	1	3,7	mm			
10	4	2	4,1	mm			
11	5	1	21,1	mm			
12	5	2	16	mm			

В программе «MS Excel»

В программе «Блокнот»

Рисунок 61 – Числовые данные во внешних программах

3 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Техническое обслуживание толщиномера заключается в очистке электронного блока от пыли и грязи и заряде аккумулятора.

3.1 АККУМУЛЯТОР

Аккумулятор прибора рассчитан на работу в широком диапазоне температур. При отрицательных температурах емкость аккумулятора снижается, так при нижнем значении температурного диапазона емкость ниже примерно на 15%, чем при нормальной температуре.

При полном разряде аккумулятора прибор автоматически выключается.

В аккумулятор встроена защита от перезаряда, переразряда, превышения по току и по температуре.

Ресурс аккумулятора рассчитан на весь гарантийный срок эксплуатации прибора.

Замена аккумулятора выполняется только сервисными центрами.

ВНИМАНИЕ: САМОСТОЯТЕЛЬНАЯ ЗАМЕНА АККУМУЛЯТОРА ПОЛЬЗОВАТЕЛЕМ ВЕДЕТ К ПОТЕРЕ ГАРАНТИИ НА ПРИБОР!

3.2 ЗАРЯДКА АККУМУЛЯТОРА

Зарядка аккумулятора может выполняться от внешнего зарядного устройства или от ПК через USB разъем.

Время зарядки аккумулятора зависит от степени его разряда. Время полной зарядки составляет 4-5 часов. Допускается многократная подзарядка.

При зарядке прибор может работать, но время зарядки аккумулятора в этом случае увеличивается в 2-3 раза.

ВНИМАНИЕ: ВО ИЗБЕЖАНИИ ВЫХОДА ИЗ СТРОЯ АККУМУЛЯТОРА НЕ ДОПУСКАТЬ ХРАНЕНИЕ ПРИБОРА С РАЗРЯЖЕННЫМ АККУМУЛЯТОРОМ!

3.3 ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ

При возникновении неисправностей в работе толщиномера или каких-либо вопросов по его использованию следует связаться с представителями предприятия-изготовителя.

4 ХРАНЕНИЕ

Толщиномер должен храниться в сумке, входящей в комплект поставки прибора. Условия хранения-1 по ГОСТ 15150-69.

Приборы следует хранить на стеллажах.

Расположение приборов в хранилищах должно обеспечивать их свободное перемещение и доступ к ним.

Расстояние между стенами, полом хранилища и приборами должно быть не менее 100 мм.

Расстояние между отопительными устройствами хранилищ и приборами должно быть не менее 0,5 м.

В помещении для хранения не должно быть токопроводящей пыли, примесей агрессивных газов и паров, вызывающих коррозию материалов прибора.

5 ТРАНСПОРТИРОВАНИЕ

Толщиномер должен транспортироваться в сумке, входящей в комплект поставки прибора.

Условия транспортирования в части воздействия климатических факторов внешней среды должны соответствовать условиям хранения 5 по ГОСТ 15150-69.

Транспортировка упакованных приборов может производиться на любые расстояния любым видом транспорта без ограничения скорости.

Упакованные приборы должны быть закреплены в транспортных средствах, а при использовании открытых транспортных средств - защищены от атмосферных осадков и брызг воды.

Размещение и крепление в транспортных средствах упакованных приборов должны обеспечивать их устойчивое положение, исключать возможность ударов друг о друга, а также о стенки транспортных средств.

Условия транспортирования приборов должны соответствовать требованиям технических условий и правилам и нормам, действующим на каждом виде транспорта.

При перевозке воздушным транспортом упакованные приборы следует располагать в герметизированных и отапливаемых отсеках.

После транспортирования при температурах, отличных от условий эксплуатации, перед эксплуатацией прибора необходима выдержка его в нормальных климатических условиях не менее двух часов.

ПРИЛОЖЕНИЕ А

(справочное)

Скорости распространения продольных ультразвуковых волн в некоторых материалах приведены в таблице A.1

Таблица А.1

Материал	Скорость, м/с	Материал	Скорость, м/с
Алюминий	6260	Бетоны	2000 - 5400
Алюминиевый сплав Д16Т	6320	Базальт	5930
Бронза (фосфористая)	3530	Габбро 38	6320
Ванадий	6000	Гипс	4790
Висмут	2180	Гнейс	7870
Вольфрам	5460	Гранит	4450
Железо	5850	Диабаз 85	5800
Золото	3240	Доломит	4450
Константан	5240	Известняк	6130
Латунь	4430	Известняк 86	4640
Латунь ЛС-59-1	4360	Капрон	2640
Магний	5790	Кварц плавленый	5930
Манганин	4660	Лабрадорит 44	5450
Марганец	5561	Лед	3980
Медь	4700	Мрамор	6150
Молибден	6290	Плексиглас	2670
Никель	5630	Полистирол	2350
Олово	3320	Резина	1480
Осмий	5478	Слюда	7760
Свинец	2160	Стекло органическое	2550
Серебро	3600	Стекло силикатное	5500
Ситалл	6740	Сталь Х15Н15ГС	5400
Сталь 20 ГСНДМ	6060	Сталь Ст3	5930
Сталь ХН77ТЮР	6080	Текстолит	2920
Сталь 40ХНМА	5600	Тефлон	1350
Сталь ХН70ВМТЮ	5960	Фарфор	5340
Сталь ХН35ВТ	5680	Эбонит	2400
Тантал	4235	Цирконий	4900
Хром	6845	Чугун	3500 - 5600
Цинк	4170		

Толщиномер ультразвуковой А1210 РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ Редакция июль 2015 г.